Parallel Numerical Algorithms for Symmetric Positive Definite Linear Systems

نویسنده

  • Chandra Sekhara Rao
چکیده

We give a matrix factorization for the solution of the linear system Ax = f , when coefficient matrix A is a dense symmetric positive definite matrix. We call this factorization as "WW T factorization". The algorithm for this factorization is given. Existence and backward error analysis of the method are given. The WDWT factorization is also presented. When the coefficient matrix is a symmetric tridiagonal matrix, a small modification to the WWT factorization is given and we call this factorization as "WZ factorization". In this factorization the inner (n — 2) x (n — 2) submatrices of W and Z are same as the inner (n — 2) x (n — 2) submatrices of W and WT respectively corresponding to the case when coefficient matrix is symmetric tridiagonal matrix. When combined with partitioning scheme, it renders a divide and conquer algorithm for the symmetric tridiagonal linear systems. We proved the existence of the factorization in the important cases which occur frequently in scientific computations; when the coefficient matrix A is (0 Symmetric positive definite matrix (ii) Symmetric diagonally dominant in addition to the nonsingularity. Solution procedure crucially hinges on the solution of the "reduced system". We proved that reduced system retains the original properties of the original matrix like symmetric positive definiteness, diagonally dominance. The backward error analysis is given. The WDZ algorithm is also designed for symmetric tridiagonal linear systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

Comparative Analysis of High Performance Solvers for 3D Elliptic Problems

The presented comparative analysis concerns two iterative solvers for 3D linear boundary value problems of elliptic type. After applying the Finite Difference Method (FDM) or the Finite Element Method (FEM) discretization a system of linear algebraic equations has to be solved, where the stiffness matrix is large, sparse and symmetric positive definite. It is well known that the preconditioned ...

متن کامل

A Parallel Multi-threaded Solver for Symmetric Positive Definite Bordered-Band Linear Systems

We present a multi-threaded solver for symmetric positive de nite linear systems where the coe cient matrix of the problem features a bordered-band non-zero pattern. The algorithms that implement this approach heavily rely on a compact storage format, tailored for this type of matrices, that reduces the memory requirements, produces a regular data access pattern, and allows to cast the bulk of ...

متن کامل

Scallability Analysis of Parallel Mic(0) Preconditioning Algorithm for 3d Elliptic Problems

Novel parallel algorithms for the solution of large FEM linear systems arising from second order elliptic partial differential equations in 3D are presented. The problem is discretized by rotated trilinear nonconforming Rannacher–Turek finite elements. The resulting symmetric positive definite system of equations Ax = f is solved by the preconditioned conjugate gradient algorithm. The precondit...

متن کامل

WZ factorization via Abay-Broyden-Spedicato algorithms

Classes of‎ ‎Abaffy-Broyden-Spedicato (ABS) methods have been introduced for‎ ‎solving linear systems of equations‎. ‎The algorithms are powerful methods for developing matrix‎ ‎factorizations and many fundamental numerical linear algebra processes‎. ‎Here‎, ‎we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW‎ ‎factorizations of a nonsingular matrix as well as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013